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EDGE AND REINFORCED BY BULBS AT OTHER EDGE

By Stanley Goodman
SUMMARY

The compressive buckling stress of outstanding flanges reinforced
by bulbs was computed by the strain-energy method for flanges having
10 shapes and a range of lengths. The results were checked for some
cases by computations based on a differential—equation method. The edge
of the flange opposite the bulb was considered clamped, and the loaded
ends were considered simply supported. The results were analyzed to
determine which shape of flange gave the greatest support to the struc—
ture to which it was attached. It was found that the flange capable of
giving the most support without buckling had on over—all flange width
of 3.4 {KE (where Ap 1s the cross—sectional area of the flange).
This flange was somewhat slimmer than the one previously found best for
the case of a simply supported flange root.

INTRODUCTION

Flanges reinforced by bulbs are widely used to reinforce the
stressed skin in semimonocoque alrcraft structures. They perform a two—
fold function in the structure by (1) maintaining the structural shape
and (2) carrying a substantial portion of the externally applied load.

The outstanding flanges in such structures have a tendency to fail
under compressive load by a lateral displacement of the outstanding
portions of the flange with respect to the rest of the structure. As
is pointed out in reference 1, such a failure 1s intermediate between
torsional instability in which no cross—sectional distortion of the
flange occurs (considered by Goodier in reference 2, Kappus in refer—
ence 3, and Lundquist and Fligg in reference 4) and local instability
of component elements of the structure in which the lines Joining
component plates remain straight (considered by Timoshenko in refer—
ence 5, Kroll in reference 6, and Lundquist, Stowell, and Schuette in
reference 7).
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The lateral instability of outstanding flanges under compressive
load, for the case where the flange has a relnforcing bulb at its outer
edge, has received considerable study. Windenburg (reference 8) consid—
ered both local and primary instability of flanges having a reinforcing
buld symmetrically placed on both sides of the flange web. He consid—
ered the case of simple support of the flange by the structure to which
it is attached. Chwalla (reference 9) considered the case where the
structure gives clamped support to the flange and presented numerical
results for certain specific cases.

A survey (reference 1) of aluminum-alloy extrusions showed that
the shape of most reinforcing bulbs is elther rectangular with a rounded
end and a fillet at the junction of the bulb and flange or circular with
a fillet at the Junction of the bulb and the flange. In nearly all
cases the bulb was entirely on one side of the flange, thus resulting
in an unsymmetrical distribution of material at the outer edge of the
flange. It was found that the range of cross—sectional shapes used
could be approximately covered by 54 specific flange shapes.

In reference 1, numerical solutions were given in dimenslonless
form for the lateral instability of these 54 different flanges as a
function of the flange length. The edge condition along the line of
attachment to the structure was taken as the extreme of simple support.
In the present paper, the case of clamped support will be treated and,
of the Sk cross sections analyzed in reference 1, only a representative
group of 10 will be considered.

This work was conducted at the National Bureau of Standards under
the sponsorship and with the financial assistance of the National
Advisory Committee for Aeronautics.

SYMBOLS
Ab cross—sectional area of bulb; bulb Includes area cross—
hatched in figure 1
Ap cross—sectional area of flange
Aq cross—sectional area of sheet in sheet—stringer structure
b flange width from base to bulb center
by width of rectangular—type bulb from free end to center line

of web
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Crmin

flexural rigidity of web [—Eto
12(1 - v2)

Youngts modulus

shear modulus — B
2(1 + v)

Polsson's ratio; 0.3

moment of inertia

moment of inertia of bulb about center line of web
moment of inertia of flange about its base
torsion constant of bulb

flange length

flange thickness

thickness of rectangular—type bulb

fillet radius of rectangular—type bulb, taken equal to tq
fillet radius of circular—type buld

bulb radius of circular—type bulb

lateral displacement of flange

compressive end stress

critical stress for instability of flange

critical stress for sheet—stringer structure

critical stress for instability of an infinitely long
flange

angle of twist of bulb with respect to web
coordinate along flange length

coordinate along flange width
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SHAPE OF REINFORCED FLANGES

The shapes of the reinforced flanges are shown in figure 1 and
their properties and dimensions are given in table 1. Five of the
flanges had essentially rectangular reinforcing bulbs, while, for the
remaining five, the bulbs were essentially circular. The first column
in table 1 gives the flange number. The second column gives the number
of the corresponding flange considered in reference 1. The third
column gives the thickness of the flange web, and columns (4) to (6)
give dimensionless ratios describing the shape of the cross section.

ANALYSTS

The flanges considered in this report are clamped at the root edge
and get lateral and torsional support at the outer edge from the
reinforcing bulb. For such a flange, no bending is possible in the
plane of the web and, therefore, any bending which does occur will have
the web center line as a neutral axis. This fact will allow a conven—
tional treatment for the unsymmetrical reinforcing bulbs (fig. 1)
considered in this report. The buckling stress of the flange will be
computed as that of a plate clamped at one edge and restrained at the
othsr edge by a beam. This beam will have a bending stiffness EIy
equal to that of the cross-hatched area of figure 1 about the center
line of the web, a torsional stiffness GJp equal to that of the whole
flange (fig. 1) less that of the web, and an area Ay equal to that of
the cross—hatched area of figure 1. Values of Iy, Jn, and A, are
given in columms (7), (8), and (9) of table 1. The total area of the
flange Ap 1is given in colwm (10) of table 1. The flexural rigidity D
1s given as D/E in column (11) of table 1.

Plate Theory

An expression for the compressive buckling stress was first
obtained by integrating the differential equation of the deflection
surface to find the magnitude of the compressive stress necessary to
keep the plate in a slightly buckled shape. The derivation of this
method appears in the appendix. Since the integration method appeared
excessively cumbersome, & straln—energy method was developed, using the
technique given on pages 325 to 327 of reference 5 as follows:
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The work of the external forces on the plate and beam (see p. 325,
reference 5) is

bopL 2 Oyl L 3w \2
(1/2) axt%) dx dy + —152—11 <§x_> dx = Iyo, (1)
o Jo 0 y=b

The strain energy of the beam and plate, neglecting shear in the
beam is (see pp. 325, 24, and 265, reference 5)

b pL
om [ [ & e B @] e
o Jo ox oy ' ox”~ dy Axy,
L o ‘ L 2
D& w3 (2 a-x @)
2 ox y=b dx

0
= (= 3)
¥ G;)yﬂ) (

In order to obtain the results in dimensionless form it was
convenient to set v = 0.3, G =E/2.6 and to work with I;', defined

where

by
52 Fw Pw [ >2]
Iiv=1 D/2E - 1.4 - dx g
1= T/8 = (0 )f f ax y> [axE e <axay T
o 52") dx + .J_T._ <.@>2 dx (%)
2 0 <ax2 y=b 5.2 0 dx y=b

A function allowing a single buckle in the x—direction,

w = <sin I—)(alyz + aey + a.3yb' .. anyn+l> (5)

where 815 8py + - ey a, are arbitrary constants, was chosen to
represent the deflection surface of the plate.



6 NACA TN 1985

The critical stress is given by the expression (reference 5,
p. 326)

IQUcr = Il (6)

or, using equation (4),

I ]
0oy /B = fi— (7)

The values of the constants a,, 3 . in equation (5) are
determined from the condition that %hey give the lowest possible
buckling stress o,.- For this to be true they must satisfy the set of

similtaneous equations (reference 5, p. 326)

BIl' + UCT 812 -0

Bal E aa,l

¢ (8)

oI;! , Jer oIo _
dap E oap

-

Solutions of equations (8) different from zero may be obtained
only if the determinant of the equations is zero.

The expressions for I;' and I, may be obtained by substituting
equation (5) in equations (&) and (1), respectively. The critical
buckling stress may then be obtained by substituting the expressions
obtained for I;' and I, in equation (8), setting the determinant

of the resulting equations equal to zero, and solving for the lowest
values of o;p/E.

Convergence

To determine the minimum number of arbitrary constants necessary
in equation (5) for accurate determination of the buckling stress, the
buckling-stress ratio of flange 5 with L/\J/Ap = 5.396 was computed
three times, using one, two, and three arbitrary constants in equa—
tion (5), successively. The buckling—stress values according to the
strain—energy method were as follows:
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Number of‘arbitrary constants
in deflection equation Values of o¢.,./E obtained
1 0.0308
e .0282
3 + 0233

The convergence seemed slow. To obtain additional information on this

point, the buckling stress was also computed by the integration method
with the result ocr/E = 0.0233.

It was concluded that in this case the equation

w o= (sin —->< y2 + 2y3 + a.3yu) (9)

has the minimum number of arbitrary constants necessary to adequately
represent the deflection surface.

Buckling stress—ratio values for one or more length-ratio values
were computed for each of the 10 flange shapes by the integration
method given in the appendix for comparison with the corresponding
buckling stress obtained by the strain—energy method using equation (9).
Stress—ratio values obtained by both methods are given in table 2. In
all cases the results of the two methods agree within the accuracy of
the numerical computations. It was concluded that equation (9) would
be sufficiently accurate and the remaining computations were done by
the strain—energy method using equation (9).

Contribution of Bulbd to Critical Stress

The contributions of the bending stiffness and torsional stiffness,
respectively, to the buckling stress of flange 4 at L/VEE = 18.91 were
determined by recomputing the buckling stress ratio twlce, first
omitting the bending—stiffness term, and then omitting the torsional-
rigidity term. It was found that omission of the bending—stiffness term
reduced the buckling stress—ratio value from 0.0147 to 0.0086, or
41 percent, and that omission of the torsional-stiffness term reduced
it from 0.0147 to 0.0134, or only 9 percent.

Multiple Roots
In the straln—energy method, the critical stress 1s found from the

condition that the determinant of the coefficients of three simultaneous
equations shall be zero. This determinant, when expanded, 1s a cubic
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equation, and as a result more than one solution is possible. In order
to make sure that the solution obtained was that corresponding to the
lowest buckling load, a plot was made, in some cases, of the value of
the determinant as a functlon of the assumed critical stress, starting
from zero stress. The first intersection with the zero axis was taken
as the lowest critical stress. This method was used only in those
cases where there was some doubt as to whether the stress obtained
actually corresponded to the lowest critical stress. In the other
cases, values of the determinant were gbtained only in the neighborhood
of the estimated zero point.

RESULTS

Critical Stress

The buckling stress ratio “cr/E is plotted in figure 2 against
the length ratio LKJ__ for the 10 flange shapes consldered. The
ratio L was chosen as the abscissa since it has a fixed value for
all geome ically similar specimens and it also has a fixed value for
all geometrically different speclmens of a given length having the same
cross—sectional area. Comparison of ordinates for a given abscissa
will therefore show the effect of changing the distribution of material
in the flange.

The buckling stress ratios in figure 2 decrease rapldly with
increasing flange length, go through a minimum at a flange length lower
than that usually encountered in aircraft structures, and rise rapidly
for greater flange lengths. Stubby flanges are more stable than wide,
thin flanges, and, except in the case of the two narrowest flanges,
flanges reinforced by rectangular bulbs are more stable than those
reinforced by round bulbs.

Flanges as long as those commonly used in aircraft structures will
buckle longltudinally into a number of half sine waves. In the case of
flanges with simply supported loaded ends the number of half waves into
which the flange buckles and the buckling stress for any length may be
obtained by plotting a family of curves, using the ordinates of the
original stress-ratio, length-ratio curve, and multiples 1, 2, 3, and
so forth of the corresponding abscissas, successively, as 1n figure 3.
The transition from a buckle pattern of one half wave to that of two
half waves occurs at the Intersection of the first and second curves so
drawn, from two to three half waves at the intersection of the second
and third curves, and so forth. The critical stress ratio for any
length ratio may be obtained from the curve having the lowest ordinate
at that length ratio. With Increasing length ratio the buckling stress
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ratio approaches a constant minimum value ccrmin/E' Deviations from

this minimum value are generally small in the range of flange

lengths L > EOJEE.

Transverse Deflections of Web Center Line

An expression for the relative transverse deflection of the web
center line of each of six flanges subJjected to buckling stress was
obtained as follows: Two of equations (8) were arbitrarily selected
and the buckling stress ratio was substituted for Ucr/E' The coeffi—
cient a3 was then factored out and the resulting equations were
solved simultaneously for aj/a; and ap/a3. Using equation (9), the

relative values of the deflections were computed.

These deflections are plotted in figure 4, for three flanges with
rectangular bulbs, and in figure 5, for three flanges with circular
bulbs. In figures 4 and 5, the ordinate is the ratio of the deflection
at any point on the web center line to the maximum deflection, and the
abscissa is the ratio of the distance of the point from the flange base
to the total flange width at the web center line. The flanges are
drawn to scales of equal area on the figure. The flange—deflection
curve starts at zero slope from the built—in edge, curves sharply, and
straightens at the bulb. Flanges having relatively large bulbs tend to
have s—shaped deflection curves of the web center line.

The effect of flange length on the shape of the transverse deflec-
tion curve is shown in figure 6, using flange 4 as an example. A range
of flange lengths from L/JEE = 9.45 to 27.01 was considered, since it
covers the range of lengths near the minimum buckling stress value as
shown by figure 3. The web center line tends to be s—shaped for low
values of L/ Ap, indicating that the effective stiffness of the bulb
increases rapidly wlith decreasing flange length.

EULER INSTABILITY OF SHEET-STRINGER STRUCTURES

A method for determining the effectiveness of the flanges in
preventing instability by Euler column buckling parallel to the plane
of the flange was outlined in reference 1. It was concluded that, if
the structure was not to have Euler column instability before a
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stress ocrg, the largest area of sheet Ay which a flange of moment
of inertia Ip about its base would stabilize was given by

2
% ™ Ip -1 (10)

s

The most efficlent flange for a given stress ratio Ucrs/E and
length ratio L JAF will be that having the highest value of As/AF'

Equation (10) shows that this corresponds to having the largest value
of IF/AF , that is, radius of gyration relative to the base of the
flange for a given cross—sectional area. This conclusion assumes that

no other instability occurs before column fallure. It rules out flanges
with large values of IF/AF2 which fail by any other instability at

relatively low stress. Inspection of column (14) of table 1 shows that
flange 4 has the highest value of IF/AF2 and is closely followed by
flanges 9, 6, 5, and 10. Inspection of figure 3 shows that, of this
group of five flanges, flange 4 also has the highest local buckling
strength Ucr/E for all values of L/JEE and that this strength is
well into the plastic range since 1t is never less than 0.0147.

Flange 4, therefore, is the best of the 10 flanges considered in this
report.

The area of sheet Ag, which flanges having the shape of flange L
can support, is shown in figure 7 for a range of values of dcrg (the
Euler column instability stress of the structure) from Ucrs/E = 0.004

to 0.015. The ordinate in this figure is As/AF while the abscissa
is L/VKE. The area of sheet Ay which can be stabilized decreases
sharply as either °crs/E or L/VEE increases. At high stress,
oy /E = 0.012, and reasonable length, L/\AF = 40, Ag 1s slightly
less than twice Ap.

COMPARISON OF PRESENT FLANGES WITH SIMPLY SUPPORTED FLANGES

It is of interest to compare the performance of the present flanges
clamped at the root with the performance given in reference 1 for
similar flanges simply supported at the root.
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In reference 1 it was found that the most effective flanges had
relatively compact cross sections. The best over—all flange width

ranged from 1.9 \fAp to 2.6 \[Ap and bulb width from 0.7 YAy to 1.2 [Ag.

In the present report the best flange has a somewhat slimmer appearance,
with a flange width of 3.4 \’AF and a bulb width of 1.2 \/KIZ. s

National Bureau of Standards
Washington, D. C., October 17, 1947
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APPENDIX
SOLUTION BY INTEGRATION METHOD

A solution for the buckling strength of a plate built in at one
edge and restrained by an elastic beam at the opposite edge may be
obtained as follows:

The equation of the plate surface is (reference 5, p. 324)

S, o, dw __oxt Fw

- | (A1)
ik dxPoy? oy D x2
At the edge y = b (reference 5, p. 343)
2, 2 3
8y2 6x2 ox“9dy

for torsional edge condition, and at the edge y =b (reference 5,

p. 346)

S 3w 3w w
¥ =&y (2 - v) X |- 9w
EIS [§y3 + ( v) 8x26y} Apo, ~ (A3)

for lateral-force edge condition. At the edge y = O (reference 5,
p. 3k44)

(AL)

Following pages 341 and 337 of reference 5 and taking m = 1,

w = sin %?[%(cos By — cosh ay) + B(%in By — g sinh cy)] (A5)
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where

w
it
|
o
+

and A and B must satisfy the conditlons of equations (A2) and (A3).
These glve two simultaneous equations for A and B which will only
have nonzero values for a particular value of Oy e

The two conditional equations, with expressions for the partial
derivatives obtained from equation (A5) substituted, (—sin ax

L
factored out, and y set equal to b, are:

2 2
D[AQSe cos Bb + cx.2 cosh ab + v_xg_ cos Bb — Y“—e cosh a.b> +
L L

2 2
B(p2 sin Bb + aB sinh ab + Y sin b — Y2 sinn v ) | =
12 oL

2 2 o
Gy [A(—E;?B- sin Bb — o sinh a,b> + B(“—-E cos Bb — "—2E cosh a.b>:‘

12 12 L
(Aba)
and
ﬂ2

<—EI£E + Aoy —> F\(cos Bb — cosh ab) + B<sin Bb — g sinh a.b)] =

L 12

D[A(—B3 sin Pb + a3 sinh c,b) + B<B3 cos Pb + a°B cosh u,b) +

2 2
(2 — v)Ay %(—B sin Pb — a sinh ab) + (2 — V)BK—E(B cos Bb — B cosh o,b)J
L L

(A6b)
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For a given

flange geometry the quantities A, D,
D/E, and t are

known. The value of Vv 1s taken as 0.3.

For a given value of oy/E there can be computed

2 L
ab = nz-b—2-+¢gx 1\2(10.92) —2—2= r
L E t<L
= b2 ox 2 bt
Bb = —1\'2 EE +\/E n (10-92) -‘EEI? = 5

2
Glpn™ 1 Jpe p2

2 e serZ
v2/12 = ¢
3
p % _y
Eb3  10.92b3

al

2
+ —_— =
okt % 1B

(=

Let

15

L, JTJ

Js(cos s—cosh r)—h[:s2 sin s+ rs sinh r+ 2.961c<sin s—% sinh r)]

J(s sin s+r sinh r)+h [s2 cos s+ r° cosh r+2.961c(cos s— cosh r)]

hs[s2 cos s+ re cosh r +16.78¢c(cos s—cosh r)]—p(sin s—% sinh r)

V=
h[s3 sin s—r3 sinh r +16.78¢(s sin s+ r sinh r)]+p(cos s— cosh r)
The intersection of U and V plotted as functions of oyx/E
defines 0, /E.
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TABLE 2.— BUCKLING STRESS—RATIO VALUES OBTAINED BY

BOTH STRAIN-ENERGY METHOD AND INTEGRATION METHOD

c,‘(:I'/E
Flange L/ ‘/KF— Obtained by Obtained by
strain—energy method | integration method
1 12.47 0.0244 0. 0244
19.96 .0185 .0184
5 5.23 .0570 .0570
17.43 .2207 .2207
3 11.62 .0236 .0236
4 18.91 L0147 L0147
5.40 . 0233 .0233
> | 29.98 . 0245 . 0245
6 7.18 . 00648 .00648
8.98 . 00614 . 00614
5.88 . 0666 . 0666
7 7.35 . 0642 . 0642
8 L.91 .0333 -0333
9.83 .0187 .0187
9 12.92 . 00880 . 00880
10 5.76 -0270 . 0270
1441 .0113 .0113
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(a) Rectangular-type bulb.

(b) Circular-type bulb.

Figure 1.- Shapes of reinforced flanges.
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